کوهمولوژی پیوسته و کراندار نیمگروههای توپولوژیک
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران) - دانشکده ریاضی و کامپیوتر
- نویسنده میثم میثمی صدر
- استاد راهنما عبدالرسول پورعباس عبدالحمید ریاضی
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1387
چکیده
سه نظریه کوهمولوژی با عنوانهای پیوسته، پیوسته و کراندار وضعیت* پیوسته و کراندار، برای نمایشهای نیمرگروههای توپولوژیک روی فضاهای برداری توپولوژیک خاص، تعریف می کنیم. روابط بین گروههای کوهمولوژی تعریف شده با یکدیگر و با گروههای کوهمولوژی ها خشیلد جبرهای باناخ نیمگروهی را بررسی می کنیم. مفاهیم کوهمولوژیکی میانگین پذیری جانسون و میانگین پذیر تقریبی جانسون را برای نیمگروههای توپولوژیک تعریف می کنیم. همچنین، برخی کاربردها و مثالهای محاسباتی را بررسی می کنیم.
منابع مشابه
کوهمولوژی و توسیع های گروههای توپولوژیک
فرض کنید l رسته همه گروه های آبلی موضعاً فشرده و ریخت های آن همریختی های پیوسته باشند. در ابتدادومین کوهمولوژی تحدید شده و گروه توسیع های با برش بسته a را وقتی که g موضعاً فشرده، تفکیک پذیر و متر پذیر و a یک زیر گروه نرمال بسته در g باشد، تعریف می کنیم. سپس دنباله های دقیق کوتاه به طور فشرده تولید شده در l را معرفی کرده و ثابت می کنیم که اگر g سیگما فشرده و a یک زیر گروه نرمال بسته و فشرده از g ب...
15 صفحه اولمدلهای کامل کراندار از فضاهای توپولوژیک
در این رساله مفهوم مدل برای یک فضای توپولوژیک مانند شبه تقریب و شبه یکنواختی و فضای پیوستگی معرفی می شوند. در ادامه شرایط لازم و کافی برای وجود مدل و چگونگی ارتباط آن با ساختارهای توپولوژیک فوق ارایه می شود و در انتها ثابت می شود که فضاهای متریک پذیر کامل دارای مدل می باشند.
15 صفحه اولکوهمولوژی کراندار دوم گروههای hypo-abelian
در این پایان نامه کوهمولوژی کراندار دوم یک گروه را تعریف کرده و سپس کوهمولوژی کراندار دوم گروه های hypo-abelian را بررسی می کنیم. با استفاده از سری مشتق یک گروه، ثابت می کنیم که حدس فوجی وارا برای گروه های hypo-abelian، گروه هایی بدون زیرگروه کامل نابدیهی، درست است.
15 صفحه اولکوهمولوژی گروههای توپولوژیک با ضرایب ناآبلی
در این پایان نامه، کوهمولوژی گروههای توپولوژیک با ضرایب ناآبلی را تعریف می کنیم. هرگاه ضرایب آبلی باشند، این تعریف با کوهمولوژی آبلی گروههای توپولوژیک منطبق است. با استفاده از مفهوم دومدولهای توپولوژیک متقاطع جزیی یک تعریف جدید از اولین کوهمولوژی ناآبلی گروههای توپولوژیک به دست می آوریم. با معرفی مفهوم هسته سادکی پروژکتیو استاندارد از یک گروه توپولوژیک، دومین کوهمولوژی ناآبلی گروههای ...
کوهمولوژی روی گروه های موضعی توپولوژیک
در این رساله, ابتدا گروه های موضعی توپولوژیک را تعریف نموده و خواصی از آن را شناسایی و قضیه های مرتبط با آن را ثابت می کنیم. سپس با استفاده از توپولوژی انتقال , یک زیرگروه موضعی توپولوژیک از یک گروه را به کل آن گروه گسترش داده و آن را تبدیل به یک گروه توپولوژیک می کنیم. در حالت کلی , ثابت می کنیم که یک گروه موضعی توپولوژیک با خاصیت شرکت پذیری کلی قابل گسترش به یک گروه توپولوژیک است. در ادامه...
15 صفحه اولمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران) - دانشکده ریاضی و کامپیوتر
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023